Extensive flagellar remodeling during the complex life cycle of *Paratrypanosoma*, an early-branching trypanosomatid

Tomáš Skalicky,a,b,1, Eva Dobáková,a,1, Richard J. Wheeler-c,1, Martina Tesárová,a, Pavel Flegontov,a,d, Dagmar Jirsová,3, Jan Votýpka,a,4, Vyacheslav Yurchenkov,a,d and Julius Lukeša,b,4

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; aDepartment of Parasitology, Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic; bSir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom; cLife Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; dDepartment of Parasitology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; and eInstitute of Environmental Technologies, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic and Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697

Contributed by Francisco J. Ayala, September 18, 2017 (sent for review July 11, 2017; reviewed by Mark Carrington and Paul A. Michels)

Paratrypanosoma confusum is a monoxenous kinetoplastid flagellate that constitutes the most basal branch of the highly diverse parasitic trypanosomatids, which include human pathogens *Trypanosoma* and *Leishmania*. This makes *Paratrypanosoma* uniquely informative for the evolution of obligatory parasitism from free-living lifestyle and the evolution of human parasitism in some trypanosomatid lineages. It has typical promastigote morphology but also forms surface-attached haptomonads and amastigotes. Haptomonads form by attachment to a surface via a large bulge at the base of the flagellum, which is then remodelled into a thin attachment pad associated with flagellum shortening. Promastigotes and haptomonads multiply by binary division, and the progeny of a haptomonad can either remain attached or grow a flagellum and resume swimming. Whole genome sequencing and transcriptome profiling, in combination with analysis of the cell ultrastructure, reveal how the cell surface and metabolism are adapted to parasitism and how characteristic cytoskeletal features are conserved. Our data demonstrate that surface attachment by the flagellum and the flagellar pocket, a characteristic cytoskeletal feature, is conserved. Our data demonstrate that surface attachment by the flagellum and the flagellar pocket, *Leishmania*-like flagellum attachment zone, and *Trypanosoma cruzi*-like cytosome are ancestral features, while evolution of extant trypanosomatids, including the human parasites, is associated with genome streamlining and diversification of membrane proteins.

Trypanosomatid | Evolution | Flagellar Remodeling | Haptomonads | Cytosome

**Kinoplastid flagellates are diverse and widespread protists, best known for serious human diseases caused by the trypanosomatid genera *Trypanosoma* and *Leishmania*. Most kinoplastids are successful parasites, infecting a wide range of hosts and with unique and numerous adaptations to the host environment. It is proposed that disease-causing trypanosomatids with two-host (digenetic) life cycles (an insect vector and the mammalian or plant host) evolved from flagellates parasitizing solely insects (1). The earliest known branch of the trypanosomatid clade, predating its diversification, is *Paratrypanosoma confusum*, which infects mosquitoes (2). The free-living clade closest to trypanosomatids is the genus *Bodo* (3, 4).

Emergence of monoflagellated parasitic trypanosomatids from the biflagellated bacteriovorous *Bodo* involved halving of the number of genes (3, 4). To identify further features associated with the evolution of parasitism, we analyzed the morphology of *Paratrypanosoma* and its adaptation to different in vitro environments. Combined with analysis of the genome and transcriptome, this allowed identification of genes potentially associated with these features. The single flagellum of trypanosomatids is a highly flexible structure used for locomotion, attachment, and sensing. Its structure is subject to substantial restructuring during the life cycle to adapt to different functions (5, 6) and is intimately associated with the vital flagellar pocket structure. Flagellar motility is also required for transmission, immune evasion, and cell division (7) of *Trypanosoma brucei*. Recently further flagellar functions, including production of extracellular vesicles that may mediate host interaction (8) and parasit–parasit interaction by membrane exchange or fusion (9), have been described. In the juxtaform morphological superclass (trypo- and epimastigotes), the flagellum is laterally attached to the cell by an extended flagellum attachment zone (FAZ). Alternatively, in the libiform morphological superclass, the flagellum may protrude from the flagellar pocket without an attached extension (pro-, opistho-, and choanomastigotes) (10).

Here we report that *Paratrypanosoma* and stercoralian trypanosomates, including *Trypanosoma cruzi* and *Trypanosoma brucei*, retain more ancestral genes than other trypanosomatid clades. Despite having libiform morphology, *Paratrypanosoma* has flagellum–cell attachment via a small FAZ in the flagellar pocket similar to *Leishmania* (11). It also has a complex cytostome architecture similar to *T. cruzi* (12) but lost in *T. brucei* and *Leishmania*.
formed extensive thin attachment plaques on plastic substrates (Fig. 1 B–E). We have also observed these morphologies in the gut of the Culex quinquefasciatus host. On semisolid agar, Paratrypanosoma attained a third morphology: an amastigote without a noticeable free flagellum (Fig. 1A). These morphologies are typical of monoxenous trypanosomatids: haptomonads during surface attachment in the gut of the invertebrate host, and amastigotes when excrated. All Paratrypanosoma morphologies lack an extended FAZ, typical of the liberform morphological superclass (11).

We have been unable to ascertain the relation of axenic culture to that of the last common ancestor of trypanosomatids. We propose that Paratrypanosoma calls for a study focused on the distribution of morphological and molecular traits on the trypanosomatid tree.

Results

The discovery of Paratrypanosoma as an outgroup to all other trypanosomatids calls for a study focused on the distribution of morphological and molecular traits on the trypanosomatid tree. Light microscopy of live and Giemsa-stained cells and scanning electron microscopy (SEM) showed that in liquid medium axenic Paratrypanosoma attains both a motile promastigote with a long free flagellum (Fig. 1A) and a sedentary, surface-attached stage similar to haptomonads of Leishmania (16). The haptomonad stage

Fig. 1. Morphologies of Paratrypanosoma. (A) Different morphologies by light microscopy of Giemsa-stained cells (Left) and SEM (Right). Promastigotes have a long flagellum with a prominent bulge at its base (Inset). The kinetoplast (K) and nucleus (N) are indicated. Neither haptomonads nor amastigotes have a long flagellum. (B–E) SEM of haptomonads. (B) Haptomonads attach perpendicular to the surface in dense clusters. (C) Haptomonad cluster detached from the surface by propylene oxide showing the underside of the attachment pad. (D) Haptomonads retain a bulge at the tip of their short flagellum. (E) Occasional long flagella are visible extending from the haptomonad attachment pad. [Scale bars: 5 μm (A, B, and C, except in A, Middle image), 10 μm, and Inset, 1 μm, 1 μm (D), and 2 μm (E).]

mexicana. Furthermore, it is able to restructure the flagellum to attach to surfaces, generating an extensive flagellum-derived adhesive pad, and does so readily in culture. This allowed an analysis of this process, which occurs in most trypanosomatid lineages (13–15). Judging by the distribution of morphological traits in trypanosomatids, we propose that Paratrypanosoma morphology is close to that of the last common ancestor of trypanosomatids.

Fig. 2. Promastigote attachment and replication as a haptomonad. Shown are frames from time-lapse videos of promastigote and haptomonad interconversion. Attachment of a promastigote to form a haptomonad and two successive divisions, first forming two haptomonads and then two haptomonads and two promastigotes. Time (hours:minutes) for each frame is shown in the top right, and a cartoon of cell arrangement is shown in the bottom left. (Magnification: 100×.)
cover a large area by these extended pads. Time-lapse light microscopy indicated hamptomonads can divide while attached, generating daughter cells that may remain attached or grow an extended flagellum and detach (Fig. 2 and Fig. S1B and Movies S1 and S2). The cell cycle took ~6 h at 20 °C, while elongation of the flagellum and detachment took 1–2 h (Fig. 2).

Transformation from promastigotes into hamptomonads was promoted by nutrient availability and alkaline pH. The digestive tract of a mosquito is nutrient-rich and typically alkaline (17) and is thus suitable for hamptomonads. The attachment pad was highly resistant to our attempts to degrade it enzymatically (Dataset S1), indicating it could confer strong attachment even under harsh digestive conditions in the mosquito gut. Formation of hamptomonads, like life cycle transitions in other species, includes significant remodeling of the flagellum. We therefore sequenced the *Paratrypanosoma* genome for analysis of evolution of the flagellum and flagellum-related cytoskeleton and as a reference for transcriptome analysis of different morphological stages for insight into metabolism.

Using paired-end and mate-pair Illumina reads, we assembled a 31.4 Mbp draft genome with 31x average coverage and 2,114 scaffolds (maximum length, 2.99 Mbp; N50 of 438 Kbp). Using Augustus trained on a set of unambiguous gene models for conserved genes and RNA-sequencing (RNA-Seq) read mapping, we annotated 8,668 protein-coding genes, 66 tRNAs, and 122 tRNA genes. This gene complement is comparable to other trypanosomatids (18). Most core eukaryotic genes (72.3%) were shared with any two trypanosomatid clades only (but not bodonids), and *Paratrypanosoma* has retained more ancestral features than other trypanosomatids. Using OrthoFinder (20), we defined orthologous genes in haptomonads were associated with the ribosome or translation (Dataset S3).

We used comparative genomics to investigate whether *Paratrypanosoma* has retained more ancestral features than other trypanosomatids. Using OrthoFinder (20), we defined orthologous groups (OGs) of proteins for a large set of trypanosomatids, three bodonids (free-living *Bodo saltans* and *Neobodo designis*, and parasitic *Trypanoplasma borbori*), endosymbiotic *Perkinsia sp.*, and *Naegleria gruberi*, a heterolobosean (Fig. 3 and Dataset S4). Next, we counted the number of ancestral OGs (OGs shared with any bodonid or *Naegleria*) for clarity (Fig. S6). (i) Phylogenetic patterns visualized for six clades: filled circle, *Paratrypanosoma*, *Phytomonas/Blechomonas*; filled triangle, *Leishmania/Perkinsia/Crithidia*; open triangle, stercorarian trypanosomes; open square, bodonids/*Perkinsia/Naegleria*. Counts of OGs unique to each clade and all possible intersections of the six clades are shown, plotted on a log scale with selected counts indicated. Counts of ancestral OGs shared by one (dark green) or two (light green) clades are indicated.

Fig. 3. Ancient gene families in *Paratrypanosoma* and other trypanosomatids. (A) Trypanosomatid phylogenetic tree based on 98 contatened protein sequences. Tree node support is shown as “bootstrap support/posterior probability,” and “*/*” indicates full support. Counts of OGs shared with one bodonid and/or *Naegleria* are color-coded per species (scale on left). OG gains (blue) and losses (red) were mapped by Dollo parsimony. Fewer basal nodes are shown for clarity (Fig. S6). (B) Phylectic patterns visualized for six clades: filled circle, *Paratrypanosoma*, *Phytomonas/Blechomonas*; filled triangle, *Leishmania/Perkinsia/Crithidia*; open triangle, stercorarian trypanosomes; open square, bodonids/*Perkinsia/Naegleria*. Counts of OGs unique to each clade and all possible intersections of the six clades are shown, plotted on a log scale with selected counts indicated. Counts of ancestral OGs shared by one (dark green) or two (light green) clades are indicated.
suggests that the haptomonad stage might be an ancestral characteristic of trypanosomatids. The dramatic morphological change between promastigotes and haptomonads is formation of the adhesive pad from the bulge at the base of the promastigote flagellum. As this may involve restructuring of the paraflagellar rod (PFR), FAZ, and flagellar axoneme, we analyzed conservation across kinetoplastids of proteins known to form these structures (Fig. S2). The FAZ proteins are of particular interest as they have adaptable functions in cell morphogenesis. They were first identified in the extended FAZ of Trypanosoma but are also components of the flagellar pocket neck in Leishmania promastigotes (11).

Using TEM and electron tomography, we analyzed the structure of the pocket and base of the flagellum to determine the ultrastructural features responsible for the haptomonad morphological adaptation. TEM revealed extensive attachment of the bulge to the cell body by desmosome-like structures in promastigotes and haptomonads, comparable to the Leishmania flagellar pocket neck, albeit covering a larger area (Fig. S3A and B). This suggests the proteins involved in bulge-cell attachment are the FAZ proteins, and RNA-seq showed FAZ mRNAs were present in both promastigotes and haptomonads. Attachment is particularly complex in the distal pocket region, likely mediated by FAZ10, and this attachment was elaborated in haptomonads (Fig. S3B). Immunofluorescence using the anti-T. brucei FAZ antibody Dot1 identified a structure in promastigotes near the expected localization of FAZ10, which also showed elaboration in haptomonads (Fig. S3C). The Paratrypanosoma genome encodes orthologs of almost all FAZ proteins (Fig. S2A), while Bodo and Neobodo have orthologs of around half. The trypanosomatids therefore appear to have diversified FAZ proteins. Given the ancestral trypanosomatid was likely liberform, we propose that the FAZ proteins originally evolved to generate the haptomonad morphotype. The extended FAZ of the juxtaform Trypanosoma later arose in that lineage. Some FAZ proteins are often lost among liberforms (FAZ4, FAZ13), and some OGS (FLA, FLABP, FAZ11) show duplication among juxtaforms. Further candidates for forming the extended FAZ may be identified among OGS gained at the Trypanosoma node (Datasets S5 and S8).

SEM of promastigotes revealed a cytostome-like indentation near the cell anterior (Fig. 1A and 1F). TEM of the pocket structure (Fig. S4B) and 3D reconstruction of the pocket organization by electron tomography showed that overall the pocket was typical of promastigotes, including those of Leishmania, with a simple invagination surrounded by complex electron-dense areas and sets of microtubules (Fig. 4). There were two sets of specialized microtubules: a quartet similar to the FAZ quartet of T. brucei and Leishmania (23), and a highly decorated set of microtubules associated with the cytostome. These ran from the pocket neck around the preoral ridge, back to a dip in the cell surface from which microtubules extend into the cytoplasm (Fig. 4 and Fig. S4A). This structure is comparable to the T. cruzi cytostome/cytopharynx (11). This suggests the Leishmania-like flagellar pocket neck/FAZ structure and microtubule quartet were ancestral and later extended into the long Trypanosoma FAZ. It also indicates the cytostome was present in the ancestral trypanosomatid; has been lost in Leishmania, many monoxenous trypanosomatids, and salivarian trypanosomine lineages; but retained in stercorarian trypanosomes, some monoxenous parasites (including Crithidia fasiculata), and B. saltans (24). No gains or losses of FAZ OGS suggested a function in formation of the cytostome. The Paratrypanosoma promastigote flagellum has the canonical 9+2 axoneme and, based on the genome sequence, a canonical molecular composition (Fig. S2). Both haptomonads and amastigotes have greatly shortened flagella. In Leishmania, flagellar shortening during transition to the amastigote is associated with loss of the central pair, distal motor proteins, and radial spokes, giving a transition from a 9+0 to a collapsed 9v (variable)

Fig. 4. Paratrypanosoma has a cytostome similar to T. cruzi and a pocket architecture similar to Leishmania. 3D model of the pocket/cytostome of Paratrypanosoma assembled from an electron tomogram, with the approximate position of the tomographic volume within a promastigote cell indicated. Virtual sections through the preoral ridge (1), the cytostome (2), the cytostome microtubules exiting the pocket (3) and the FAZ-associated microtubule quartet (4), the PFR (5), and axoneme next to the PFR (6) are shown. The quasi-crystalline structure of the PFR (5) was only present immediately next to the axoneme (6) in the promastigote bulge. (Scale bars, 100 nm.)

axoneme (6). We used TEM to check whether similar axoneme restructuring occurred in Paratrypanosoma (Fig. 5). Longitudinal sections through the promastigote, haptomonad, and amastigote flagellum base showed a basal plate and central pair, while longitudinal sections and Markham rotational averaging showed a presence of the central pair, radial spokes, and inner and outer dynein arms in all three stages (Fig. S5). RNA-seq data confirmed this result, with central pair, radial spoke, and dynein arm light and intermediate chains not significantly regulated between promastigotes and haptomonads (Dataset S9). Essentially all axonomal components were conserved in all species analyzed (except Perkinsela, which has lost its flagellum), providing no putative markers for the 9v axoneme formation.

The PFR is normally present in trypanosomatid flagella but is usually lost in amastigotes. We therefore asked if the PFR is present in different developmental stages and whether it restructures to form the haptomonad adhesive pad. TEM showed the PFR is present in promastigotes but was shortened or absent in haptomonads and amastigotes (Fig. 5A–C). Immunofluorescence using an antibody recognizing PFR2, a major PFR component, showed a similar PFR in promastigotes to T. brucei-like flagellar pocket neck, back to a dip in the cell surface from which microtubules extend into the cytoplasm (Fig. 4 and Fig. S4A). This structure is comparable to the T. cruzi cytostome/cytopharynx (11). This suggests the Leishmania-like flagellar pocket neck/FAZ structure and microtubule quartet were ancestral and later extended into the long Trypanosoma FAZ. It also indicates the cytostome was present in the ancestral trypanosomatid; has been lost in Leishmania, many monoxenous trypanosomatids, and salivarian trypanosomine lineages; but retained in stercorarian trypanosomes, some monoxenous parasites (including Crithidia fasiculata), and B. saltans (24). No gains or losses of FAZ OGS suggested a function in formation of the cytostome. The Paratrypanosoma promastigote flagellum has the canonical 9+2 axoneme and, based on the genome sequence, a canonical molecular composition (Fig. S2). Both haptomonads and amastigotes have greatly shortened flagella. In Leishmania, flagellar shortening during transition to the amastigote is associated with loss of the central pair, distal motor proteins, and radial spokes, giving a transition from a 9+0 to a collapsed 9v (variable)
Paratrypanosoma has all of the enzymes needed for ether phosphoenolpyruvate mutase, previously identified only in a pathway needed for phosphonolipid formation carried out by transferase reaction of phosphatidic acid formation. It also encodes which may indicate an inability to perform the second acyl-from all trypanosomatids including Paratrypanosoma, implying that they are unable to convert mitochondrial acetyl-CoA to citrate. Only Paratrypanosoma and Leishmaniinae are able to convert and subsequently oxidize methionine into succinyl-CoA. Finally, the tryptophan degradation pathway is present in N. gruberi, T. borrelli, B. saltans, as well as Paratrypanosoma, but lost from all other trypanosomatids (Dataset S10).

Discussion

We have demonstrated that Paratrypanosoma, the most basal-branching trypanosomatid derived from free-living bodonids (2), assumes three different morphotypes characteristic of trypanosomatids. In a liquid cultivation medium, it alternates between motile promastigote and surface-attached haptomonad morphologies, both capable of division. Transfer to an agar plate triggers transformation into another distinct morphotype: an amastigote. As these morphotypes are common among mono- and dixenous trypanosomatids, this indicates that the ancestral trypanosomatid likely had morphological flexibility, advantageous when faced with dramatically different conditions during the evolution of parasitism of invertebrate and vertebrate hosts. Therefore, the trait of extensive interstage morphological transformation of Leishmania and Trypanosoma in their mammalian and insect hosts likely existed in their monoxenous predecessor; the wide array of trypanosomatid morphotypes (10) did not originate within the context of dixenous parasitism but predated the two-host lifestyle (25).

The capacity to firmly but transiently attach to a substrate by the flagellum, apparently preventing their discharge from the host, is common in trypanosomatids. Bodonids can also undergo surface attachment (24). This feature might have predisposed trypanosomatids for their initial radiation in insects (1), which required fixation to the host gut. Attachment associated with extensive remodeling of the flagellum, as in other trypanosomatids (22), seems to be a central feature in the life cycle of Paratrypanosoma. Attachment and flagellum shortening could occur without a division event, while we only observed flagellum growth and detachment following division of a haptomonad. This has similarities to both Leishmania, in which flagellum shortening can occur without division, and T. brucei, in which division to generate dissimilar daughters is used for life cycle stage transition. Remodeling of the flagellum in haptomonads involved expansion of flagellum/cell attachment in the distal pocket region, suggesting the FAZ proteins may contribute to surface attachment.

OG gains and losses indicate Paratrypanosoma has diverged significantly from the common ancestor of trypanosomatids (Fig. S6), however it has retained more ancestral OGs than any trypanosomatid lineages except stercorarian trypanosomes (Fig. 3). Recent comparison of the B. saltans and trypanosomatid genomes revealed that metabolic losses accompanied the emergence of obligatory parasitism (3) with little further gene loss or streamlining in their mammalian and insect hosts likely evolved from dixenous development. Attachment and flagellum shortening could occur without a division event, while we only observed flagellum growth and detachment following division of a haptomonad. This has similarities to both Leishmania, in which flagellum shortening can occur without division, and T. brucei, in which division to generate dissimilar daughters is used for life cycle stage transition. Remodeling of the flagellum in haptomonads involved expansion of flagellum/cell attachment in the distal pocket region, suggesting the FAZ proteins may contribute to surface attachment. OG gains and losses indicate Paratrypanosoma has diverged significantly from the common ancestor of trypanosomatids (Fig. S6), however it has retained more ancestral OGs than any trypanosomatid lineages except stercorarian trypanosomes (Fig. 3). Recent comparison of the B. saltans and trypanosomatid genomes revealed that metabolic losses accompanied the emergence of obligatory parasitism (3) with little further gene loss or streamlining in their mammalian and insect hosts likely evolved from dixenous development. Attachment and flagellum shortening could occur without a division event, while we only observed flagellum growth and detachment following division of a haptomonad. This has similarities to both Leishmania, in which flagellum shortening can occur without division, and T. brucei, in which division to generate dissimilar daughters is used for life cycle stage transition. Remodeling of the flagellum in haptomonads involved expansion of flagellum/cell attachment in the distal pocket region, suggesting the FAZ proteins may contribute to surface attachment. OG gains and losses indicate Paratrypanosoma has diverged significantly from the common ancestor of trypanosomatids (Fig. S6), however it has retained more ancestral OGs than any trypanosomatid lineages except stercorarian trypanosomes (Fig. 3). Recent comparison of the B. saltans and trypanosomatid genomes revealed that metabolic losses accompanied the emergence of obligatory parasitism (3) with little further gene loss or streamlining in their mammalian and insect hosts likely evolved from dixenous development. Attachment and flagellum shortening could occur without a division event, while we only observed flagellum growth and detachment following division of a haptomonad. This has similarities to both Leishmania, in which flagellum shortening can occur without division, and T. brucei, in which division to generate dissimilar daughters is used for life cycle stage transition. Remodeling of the flagellum in haptomonads involved expansion of flagellum/cell attachment in the distal pocket region, suggesting the FAZ proteins may contribute to surface attachment.
of the genome occurring later (4, 25). Indeed, our analyses revealed a massive loss of proteases, peptidases, and cathepsins involved in the breakdown of polypeptides. *Paratrypanosoma* and other trypanosomatids have also lost receptor-mediated endocytosis of macromolecules, cobalamin biosynthesis, and lysosomal pro-X exopeptidase and ammonium transporter, compelling trypanosomatids into foraging nitrogen from other sources. *Paratrypanosoma* has gained or expanded several gene families that were not present in its free-living predecessor, including membrane transporters suitable for scavenging amino acids and other metabolites from the host (3, 4, 18). An interesting gene family expansion, which likely occurred early in the evolution of trypanosomatids, are the DGF1 genes, present in *Paratrypanosoma* and the stercorarian trypanosomes only. These abundant secreted proteins may play a role in host–parasite interactions (21, 22).

The ultrastructure of *Paratrypanosoma* includes a Leishmania-like FAZ including a microtubule quartet and a *T. cruzi*-like cytostome. This supports the hypothesis that the extended FAZ evolved once in the *Trypanosoma* lineage and indicates that the cytostome was an ancestral feature, retained in *T. cruzi* but lost in *T. brucei*, *Leishmania*, *Phytomonas*, and several monoxenous lineages (Fig. 6). This implies that there has been a streamlining of ultrastructure analogous to the streamlining of the genome, with the notable exception of innovation to generate an extended FAZ in *Trypanosoma*.

The differences in transcriptome of *Paratrypanosoma* promastigotes and haptomonads coexisting in culture are comparable in magnitude to the differences between *L. mexicana* amastigotes (mammalian host) and promastigotes (sandfly vectors) (18, 23). Our analysis of the morphologies *Paratrypanosoma* can attain in culture, its genome and transcription profile, and the ultrastructure of the flagellar pocket/cytostome complex has uncovered features likely present in the ancestors of the three human-infective trypanosomatid lineages (Fig. 6). Future studies of this very interesting protist will be particularly informative in regard to how trypanosomatid parasites have evolved from the free-living bodonids.

Materials and Methods

Promastigotes and haptomonads were cultured at 27 °C in a 1:1 mixture of RPMI 1640 and M199, pH 7.0, with 10% (vol/vol) FCS, 2% sterile human urine, 10 μg/mL hemin, and penicillin-streptomycin, and interconversion was analyzed by time-lapse microscopy in culture. Amastigotes were generated by culture on agarose plates. For SEM, haptomonads were grown and fixed on coverslips. For TEM, they were grown in culture flasks, treated with propylene-oxide treatment to dissolve the substrate, and then prepared by high-pressure freezing. Detailed culture and EM methods, genome assembly and annotation, transcriptome analysis, and gene family/ontology methods are available in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Milena Svobodová (Charles University) for providing the studied strain; Derrick Robinson (Université de Bordeaux) and Keith Gull (Oxford University) for providing antibodies; Pavel Hrouzek (Institute of Microbiology, Tebron) for help with time-lapse video; Anzhelika Butenko (University of Ostrava) for help with bioinformatics; and Tomáš Bily (Biology Centre) for help with microscopy. R.J.W. is supported by a Wellcome Trust Sir Henry Wellcome postdoctoral fellowship (103261/23/2). Support from the Czech Grant Agency (14-23988S to J.L. and 17-10656S to V.Y. and J.V.) and Bioimaging Grant LM2015062 and ERC CZ (LL1601) award (to J.L.) is kindly acknowledged.

SI Materials and Methods

Paratrypanosoma Cultivation and Sample Preparation for Electron Microscopy. The axenic culture was maintained at 27 °C in a mix of RPMI 1640 and M199 cultivation media (1:1) at pH 7.0 with addition of 10% (vol/vol) FCS, 2% sterile human urine, 10 μg/mL of hemin, and penicillin–streptomycin. Amastigotes were generated by culture on semisolid agarose plates. Autoclaved 3% (wt/vol) agarose was cooled to 65 °C and diluted 10 times in a prewarmed cultivation medium. The resulting 0.3% agarose solution was poured into Petri dishes (85 × 15 mm), dried for 1 h in a laminar flow hood, and inoculated with 4 × 10^6 or 2 × 10^6 resuspended log-phase cells. Light and electron microscopy (EM) were performed as described previously (2). For scanning EM, haptomonads were grown and fixed directly on coverslips, while for high-pressure freezing transmission EM (2), they were prepared using propylene–oxide treatment to dissolve the plastic substrate as described elsewhere (15). Electron tomography was performed as described previously (8).

Time-Lapse Videos. Promastigote/haptomonad interconversion was analyzed by automated time-lapse videomicroscopy. Log phase (1 × 10^6 cells per mL) promastigote culture was transferred into a 35-mm μ-dish with a glass bottom (iBidi) and recorded for 24 h at 20 °C in a chamber with controlled temperature.

Experimental Infection of Mosquitoes and Mice. Two different ways of infecting laboratory-reared mosquitoes (*C. quinquefasciatus*) were tested. Mosquitoes were starved for 24 h and then fed for 2 h on a cotton pellet presoaked in a 10% sugar solution with *Paratrypanosoma*, which was shown to survive in this solution for up to 2 d. Two independent experiments each with 50 mosquitoes were performed with 10^8 and 10^7 late log cells. Forty mosquitofemales were infected also by feeding through a chick-skin membrane on suspension of parasites mixed 1:10 with heat-inactivated rabbit blood (final concentration was 10^7 late log cells per mL). Engorged mosquitoes were separated and maintained in the appropriate conditions (23 °C, 80% humidity, 12 h day/night). The presence of *Paratrypanosoma* in mosquito intestine was checked on days 1, 2, 3, 4, 6, and 14 postinfection by dissection of 4–10 specimens at each time point. Four laboratory BALB/c mice were intraperitoneally and s.c. injected with 10^6 late log stage cells. The course of infection was recorded weekly for 1 mo (the mice were bled from the tail).

Attachment Plaque Digestion. To assess attachment plaque resistance to digestive enzymes, haptomonad culture was incubated with various enzymes for 3 h with regular intense shaking (Dataset S1), and detached cells were counted. For immunofluorescence, 1 × 10^6 pelleted cells were fixed for 10 min with 4% (wt/vol) paraformaldehyde in phosphate-buffered solution (PBS), rinsed in PBS, allowed to settle on a poly-L-lysine–coated slide, kept for 1 h in a blocking buffer containing 5% (wt/vol) nonfat dry milk in PBS, and for 2 h incubated with one of the following primary antibodies: anti-PFR2 (24) or anti-DOT1. After their removal, the cells were incubated for 1 h in blocking buffer with Alexa Fluor 488-conjugated secondary antibody, rinsed with PBS, mounted in DAPI-containing ProLong diamond antifade reagent, and observed.

Genome and Transcriptome Assembly and Annotation. Genome assembly was made with GS De Novo Assembler (Newbler) v2.9 using reads obtained on the Illumina MiSeq platform combining 3.4 million reads from a paired-end library (insert size, 0.4 kb; average read length upon trimming, 241 nt; 29x coverage) and 4 million reads from a mate-pair library (insert size, 1–8 kb; average read length upon trimming, 255 nt; 34x coverage). Total RNA and poly(A)-enriched fractions were used to prepare MiSeq paired-end libraries (insert size, 0.28 kb; read length, 150 nt) to sequence the transcriptome with the Illumina MiSeq system, resulting in 34 and 37 million high-quality reads, respectively. All sequencing data were deposited to the TriTrypDB (tritrypdb.org). Transcriptomic reads were aligned to the genome assembly using Bowtie2 v.2.2.5 with the “–end-to-end” and “–very-sensitive” options. Augustus v2.5.5 was used for annotation, and its accuracy was improved by retraining with a set of 100 highly conserved gene models. The annotation was further manually enhanced as follows: Transcribed ORFs longer than 100 amino acids, not predicted by Augustus, were added to the annotation, and gene models with start sites predicted in regions with no transcription were corrected based on RNA-seq data. Subsequently, Blast2GO programs were used to obtain functional gene annotations. To analyze differential gene expression, three independent replicates of transcriptomic Illumina HiSeq libraries from both sessilemastigotes and promastigotes were generated. Differential gene expression analysis of six libraries with ~50 million reads each (insert size, 280 bp; read length, 101 nt) was performed using a procedure described elsewhere (19).

Gene Family, Gene Ontology, and Differential Expression Analyses. GOs were inferred using Orthofinder software v.0.61 (21). Annotated proteins of 29 kinetoplastid species and a heterolobosean outgroup (Dataset S2) downloaded from TriTrypDB v.31, Marine Microbial Eukaryote Transcriptome Sequencing Project (marinemicroeukaryotes.org), and Welcome Trust Sanger Institute (www.sanger.ac.uk/resources/downloads/protozoa/) were combined with newly annotated proteins of *Paratrypanosoma* and *Blechomonas ayalai*. The Count program was subsequently used for mapping gene family gains/losses (the Dollo parsimony algorithm) onto a reference species cladogram based on a multigene phylogenetic tree. Each protein, from a set of 98 unique proteins present in all species, was separately aligned using mafft, and informative positions with consecutive concatenation was performed using Gblocks. A multiprotein tree was constructed using RAxML v. 8.2.1 (LG+Γ model) with 1,000 bootstrap and Phylobases v. 4.1c (GTR+F+CAT model) running eight independent chains for 10,000 cycles.

Gene ontology (GO) annotation of *Paratrypanosoma* gene families gained or lost at selected nodes was performed using the Blast2GO software with the following settings: BLASTP (10–30 E-value cutoff) was run using Blast2GO’s CloudBlast service, retaining the best 20 hits and filtering low-complexity regions. Mapping GO terms onto Blast hits was followed by selection of the most specific GO terms (an annotation cutoff of 55 was used). Resulting annotations were visualized by generation of GO graphs and multilevel pie charts for each GO term category (cellular component, biological process, and molecular function). A differential expression analysis using transcriptomic data from both promastigotes and haptomonads was conducted in CLC Genomic Workbench v8, and only genes with an expression fold-change ≥ 2 and an FDR-corrected P value ≤ 0.05 were analyzed further. GO term enrichment was also analyzed for protein-coding genes significantly over/underexpressed in haptomonads compared with promastigotes, versus all protein-coding genes using Fisher’s exact test with a FDR corrected P value cutoff of 0.05.
Fig. S1. Cartoon of the attachment process. (A) Frames from time-lapse video of promastigote and haptomonad interconversion. (Magnification: 100×.) (B) Cartoon depicting this process. The promastigote freely swims and can attach to a surface by the bulge. The flagellum shortens and the cell assumes an upright position with the bulge expanding into a thin attachment pad. Division events can generate cells that either attach to the surface or grow a long flagellum and leave the colony.
Fig. S2. Conservation of cytoskeletal proteins across the trypanosomatids. Matrix summarizing the presence of a single (open circle), multiple (filled circle), or no (space) orthologs of a gene family for (A) FAZ, (B) axoneme, and (C) PFR genes.

Skalicky et al. www.pnas.org/cgi/content/short/1712311114
Fig. S3. The flagellar bulge is elaborated in haptomonads for surface attachment. (A) Detail of attachment between the flagellum/bulge with the cell body in the promastigote. (B) Detail of attachment between the flagellum/bulge with the haptomonad cell body. (C) Immunofluorescence using Dot1, a T. brucei anti-FAZ antibody, of promastigotes and haptomonads. Dot1 labels a distal ring or horseshoe structure in promastigotes, similar to the localization of FAZ10 in Leishmania. The localization is elaborated in haptomonads. Desmosome-like attachments, similar to the T. brucei and Leishmania FAZ, are indicated with arrows. [Scale bars, (A) 1 μm, detail 250 nm; (B) 1 μm, detail 250 nm; (C) 2 μm.] K, kinetoplast; N, nucleus.

Skalický et al. www.pnas.org/cgi/content/short/1712311114
Fig. S4. *Paratrypanosoma* has a cytostome similar to *T. cruzi* and a pocket architecture similar to *Leishmania*. (A) SEM of the promastigote showing an indentation, similar to an extended *T. cruzi* preoral ridge, extending from the flagellar pocket to the cytostome. (B) Cartoon of the pocket/cytostome of *Paratrypanosoma*, based on TEM of the flagellar pocket. A set of highly decorated microtubules runs from inside the pocket (15) around the end of the flagellar pocket neck (8) to the cell pellicle and back to the cytostome. [Scale bars, (A) 5 μm, detail is 3.3 times enlarged, (B, 1, 2, and 4) 250 nm, and (8 and 3) 500 nm.]

Fig. S5. Restructuring of the *Paratrypanosoma* flagellum between promastigotes, haptomonads, and amastigotes. Shown is the TEM of longitudinal sections through the flagellar pocket and transverse sections through the protruding portion of the flagellum in the promastigote, haptomonad, and amastigote. Ninefold Markham rotational averaging of axoneme structure shows the presence of inner and outer dynein arms and radial spokes in the amastigote, promastigote, and haptomonad. White arrows indicate the basal plate. (Scale bar, 500 nm and flagellar details 200 nm.)
Fig. S6. Gene family gains/losses mapped on cladogram using Dollo parsimony. Gained and lost gene families (GOs) are mapped on the cladogram, the topology of which was obtained from multiprotein phylogenetic analysis. Gene families gained are labeled in blue, and gene families that were lost are in red.

Movie S1. Time-lapse video showing promastigote-to-haptomonad transformation, multiple divisions, and recreation of motile promastigote cells after division. Video shows time span of about 5 h and 30 min of real time.

Movie S1
Movie S2. Time-lapse video showing promastigote-to-haptomonad transformation, with a focus on cell flagellum and cell division. Video shows time span of about 5 h of real time.

Dataset S1. List of enzymes

(A) List of enzymes used to digest the attachment pad of haptomonads kept for 24 h in the cultivation medium. Enzymes are listed according to their activity. For some enzymes (marked with an asterisk), the concentration is listed in units. (B) List of enzymes used to digest the attachment pad of haptomonads kept for 3 h in 1× PBS. Enzymes are listed according to their activity.

Dataset S2. Phyletic patterns, differential expression data, and annotations for all Paratrypanosoma genes

Expression measured in RPKM at both life cycle stages, fold-change, and FDR-corrected P value are shown for each gene.

Dataset S3. GO terms significantly enriched in gene sets up-regulated in haptomonads and promastigotes

(A) GO terms significantly enriched (FDR-corrected P value < 0.05) in haptomonads. (B) GO terms significantly enriched in promastigotes.

Dataset S4. Genomes used for gene family analyses

Genomes were obtained from publicly available databases such as Welcome Trust, GenBank, TriTrypDB (version 31), or Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP).

Dataset S5. Annotations of ancestral genes retained in Paratrypanosoma and lost in the other trypanosomatids

Paratrypanosoma genes belonging to OGs with this phyletic pattern are shown. Annotations were generated using Blast2GO. Metabolic proteins are highlighted.
Dataset S6. Annotations of ancestral genes retained in *Paratrypanosoma* and lost in the other trypanosomatids

Paratrypanosoma genes belonging to OGs with this phyletic pattern are shown. Annotations were generated using Blast2GO. Metabolic proteins are highlighted as well as proteins of the DGF.

Dataset S7. Relationship of phyletic patterns and stage-specific gene expression in *Paratrypanosoma*

One-way ANOVA analysis combined with Tukey’s honest significance test shows that differential gene expression at the haptomonad and promastigote stages depends on phyletic patterns of corresponding OGs (P value = 1.22 × 10^{-7}). The presence/absence patterns across six species groups (phyletic patterns) are shown in the leftmost rows and on top of the matrix. Genes were grouped by phyletic patterns, and for each group, average fold-change was calculated. Positive fold-change corresponds to up-regulation in haptomonads, and negative fold-change to up-regulation in promastigotes. Number of genes with significant stage-specific differences in expression is also shown for each group. ANOVA P values corrected for multiple testing appear in each cell of the matrix and represent pairwise comparisons of gene groups.

Dataset S8. Genes belonging to OGs gained at the *Trypanosoma* node

Genes gained at the *Trypanosoma* node were identified by Count program, applying Dollo parsimony analysis on the OGs created by Orthofinder. Appropriate proteins were extracted from a working dataset of proteoms and blasted in Blast2GO against nr protein database with default settings. Column labels describe to which OG proteins belong, their gene ID, description, protein length, number of blast hits, E-value, and average % similarity.

Dataset S9. Differential expression of cytoskeletal proteins in haptomonads and promastigotes

Genes significantly up-regulated in haptomonads (Dataset S2) are marked in green color. Multigene families are also highlighted with various colors.

Dataset S10. Presence/absence of selected metabolic enzymes in all analyzed species