Ellis semigroups associated with Delone sets

Marcy Barge

Montana State University

2015
Joint with Johannes Kellendonk
Joint with Johannes Kellendonk
Object: Classify quasicrystals.
Delone sets and their hulls

- A subset $\Lambda \subset \mathbb{R}^n$ is a **Delone set** if it is both relatively dense and uniformly discrete.
Delone sets and their hulls

- A subset $\Lambda \subset \mathbb{R}^n$ is a **Delone set** if it is both relatively dense and uniformly discrete.
- Any finite subset of a Delone set Λ is called a **patch** of Λ.

Hull

The **hull**, Ω_Λ, of a Delone set Λ is the collection of all Delone sets Λ' with the property that each patch of Λ' is a translate of some patch of Λ:

$$\Omega_\Lambda := \{ \Lambda' : \forall x, \forall r, \exists y, \exists t : B_r(x) \cap \Lambda' = (B_r(y) \cap \Lambda) - t \}.$$

In the **local topology** on Ω_Λ, Λ' and Λ'' are close if there is a large r so that the patches $B_r(0) \cap \Lambda'$ and $B_r(0) \cap \Lambda''$ are Hausdorff close. This is a metric topology with metric denoted by d.

Marcy Barge
Ellis and Delone
Delone sets and their hulls

- A subset $\Lambda \subset \mathbb{R}^n$ is a **Delone set** if it is both relatively dense and uniformly discrete.
- Any finite subset of a Delone set Λ is called a **patch** of Λ.
- The **hull**, Ω_Λ, of a Delone set Λ is the collection of all Delone sets Λ' with the property that each patch of Λ' is a translate of some patch of Λ:

$$\Omega_\Lambda := \{\Lambda' : \forall x, \forall r, \exists y, \exists t : B_r(x) \cap \Lambda' = (B_r(y) \cap \Lambda) - t\}.$$
Delone sets and their hulls

- A subset $\Lambda \subset \mathbb{R}^n$ is a **Delone set** if it is both relatively dense and uniformly discrete.

- Any finite subset of a Delone set Λ is called a **patch** of Λ.

- The **hull**, Ω_Λ, of a Delone set Λ is the collection of all Delone sets Λ' with the property that each patch of Λ' is a translate of some patch of Λ:

 $$\Omega_\Lambda := \{ \Lambda' : \forall x, \forall r, \exists y, \exists t : B_r(x) \cap \Lambda' = (B_r(y) \cap \Lambda) - t \}.$$

- In the **local topology** on Ω_Λ, Λ' and Λ'' are close if there is a large r so that the patches $B_r(0) \cap \Lambda'$ and $B_r(0) \cap \Lambda''$ are Hausdorff close. This is a metric topology with metric denoted by d.

Marcy Barge
Ellis and Delone
Regularity assumptions

- Λ has **finite local complexity (FLC)** provided, for each r, there are only finitely many distinct patches $B_r(x) \cap \Lambda$, $x \in \mathbb{R}^n$, up to translation.
Regularity assumptions

- λ has **finite local complexity** (FLC) provided, for each r, there are only finitely many distinct patches \(B_r(x) \cap \Lambda\), \(x \in \mathbb{R}^n\), up to translation.

- λ is **repetitive** if for each \(x, r\) there is \(R\) so that for each \(y\) there is \(t\) with \((B_r(x) \cap \Lambda) - t \subset B_R(y) \cap \Lambda\).

A Delone set \(\Lambda\) is a **Meyer set** if \(\Lambda - \Lambda\) is uniformly discrete.

Meyer sets automatically have FLC.

STANDING ASSUMPTION (SA): \(\Omega = \Omega_{\Lambda}\) is the hull of a repetitive Meyer set \(\Lambda\).

(Note that, by repetitivity, \(\Omega_{\Lambda} = \Omega_{\Lambda'}\) for all \(\Lambda' \in \Omega\).)

Theorem: Under SA, \((\Omega, \mathbb{R}^n)\) is a compact, minimal dynamical system.
Regularity assumptions

- Λ has **finite local complexity** (FLC) provided, for each \(r \), there are only finitely many distinct patches \(B_r(x) \cap \Lambda \), \(x \in \mathbb{R}^n \), up to translation.

- Λ is **repetitive** if for each \(x, r \) there is \(R \) so that for each \(y \) there is \(t \) with \((B_r(x) \cap \Lambda) - t \subset B_R(y) \cap \Lambda \).

- A Delone set Λ is a **Meyer set** if \(\Lambda - \Lambda \) is uniformly discrete. Meyer sets automatically have FLC.
Regularity assumptions

- Λ has **finite local complexity** (FLC) provided, for each r, there are only finitely many distinct patches \(B_r(x) \cap \Lambda \), \(x \in \mathbb{R}^n \), up to translation.

- Λ is **repetitive** if for each \(x, r \) there is \(R \) so that for each \(y \) there is \(t \) with \((B_r(x) \cap \Lambda) - t \subset B_R(y) \cap \Lambda \).

- A Delone set \(\Lambda \) is a **Meyer set** if \(\Lambda - \Lambda \) is uniformly discrete. Meyer sets automatically have FLC.

- **STANDING ASSUMPTION (SA):** \(\Omega = \Omega_\Lambda \) is the hull of a repetitive Meyer set \(\Lambda \).
 (Note that, by repetitivity, \(\Omega_{\Lambda'} = \Omega_\Lambda \) for all \(\Lambda' \in \Omega_\Lambda \).)

Theorem: Under SA, \((\Omega, \mathbb{R}^n) \) is a compact, minimal dynamical system.
PHILOSOPHY:

Combinatorial structure of Λ
PHILOSOPHY:

Combinatorial structure of Λ

↕

Topology of Ω_Λ

Marcy Barge
Ellis and Delone
PHILOSOPHY:

Combinatorial structure of Λ

\uparrow

Topology of Ω_Λ

\uparrow

Dynamics of $(\Omega_\Lambda, \mathbb{R}^n)$
PHILOSOPHY:

Combinatorial structure of Λ

Topology of Ω_Λ

Dynamics of $(\Omega_\Lambda, \mathbb{R}^n)$

Algebra of $\mathcal{E}((\Omega_\Lambda, \mathbb{R}^n))$
ELLIS SEMIGROUP:
Given a compact, metric, minimal dynamical system \((X, G)\) and \(g \in G\), let \(t_g : X \to X\) be the homeomorphism \(t_g(x) := g \cdot x\). Then \(g \mapsto t_g\) embeds \(G\) in \(X^X\). Give \(X^X\) the product topology. Then
\[
\mathcal{E}((X, G)) := \{t_g : g \in G\} \subset X^X,
\]
with the operation of composition, is the **Ellis semigroup** of \((X, G)\).
ELLIS SEMIGROUP:
Given a compact, metric, minimal dynamical system \((X, G)\) and \(g \in G\), let \(t_g : X \to X\) be the homeomorphism \(t_g(x) := g \cdot x\). Then \(g \mapsto t_g\) embeds \(G\) in \(X^X\). Give \(X^X\) the product topology. Then

\[\mathcal{E}((X, G)) := \{ t_g : g \in G \} \subset X^X, \]

with the operation of composition, is the Ellis semigroup of \((X, G)\).

This is a compact semigroup: the operation is continuous on the left.

Typically, most elements of \(\mathcal{E}\) are neither one-to-one nor onto, are not continuous, and \(\mathcal{E}\) is nonabelian.
ELLIS SEMIGROUP:
Given a compact, metric, minimal dynamical system \((X, G)\) and \(g \in G\), let \(t_g : X \rightarrow X\) be the homeomorphism \(t_g(x) := g \cdot x\). Then \(g \mapsto t_g\) embeds \(G\) in \(X^X\). Give \(X^X\) the product topology. Then
\[
\mathcal{E}((X, G)) := \{t_g : g \in G\} \subset X^X,
\]
with the operation of composition, is the **Ellis semigroup** of \((X, G)\).
This is a *compact semigroup*: the operation is continuous on the left.
Typically, most elements of \(\mathcal{E}\) are neither one-to-one nor onto, are not continuous, and \(\mathcal{E}\) is nonabelian.
But \(\mathcal{E}\) is functorial and minimal left ideals exist, as do minimal idempotents.
PROXIMALITY:
Elements $\Lambda, \Lambda' \in \Omega$ are **proximal**, denoted $\Lambda \sim_p \Lambda'$, if for all r there is x so that

$$B_r(x) \cap \Lambda = B_r(x) \cap \Lambda'.$$

(Under SA, this is the same as saying that

$$\inf_{t \in \mathbb{R}^n} d(\Lambda - t, \Lambda' - t) = 0.$$
PROXIMALITY:
Elements $\Lambda, \Lambda' \in \Omega$ are **proximal**, denoted $\Lambda \sim_p \Lambda'$, if for all r there is x so that

$$B_r(x) \cap \Lambda = B_r(x) \cap \Lambda'.$$

(Under SA, this is the same as saying that
$$\inf_{t \in \mathbb{R}^n} d(\Lambda - t, \Lambda' - t) = 0.$$)

The difference between quasicrystals (nonperiodic Λ) and crystals (fully periodic Λ) is found in the proximal relation, and the weaker regional proximal relation, on Ω.

Marcy Barge
Ellis and Delone

PROXIMALITY:

Elements $\Lambda, \Lambda' \in \Omega$ are **proximal**, denoted $\Lambda \sim_p \Lambda'$, if for all r there is x so that

$$B_r(x) \cap \Lambda = B_r(x) \cap \Lambda'.$$

(Under SA, this is the same as saying that $\inf_{t \in \mathbb{R}^n} d(\Lambda - t, \Lambda' - t) = 0$.)

The difference between quasicrystals (nonperiodic Λ) and crystals (fully periodic Λ) is found in the proximal relation, and the weaker regional proximal relation, on Ω. $\Lambda, \Lambda' \in \Omega$ are **regionally proximal**, denoted $\Lambda \sim_{rp} \Lambda'$, if for all r there are $S, S' \in \Omega$ and $x \in \mathbb{R}^n$ so that:

$$B_r(0) \cap \Lambda = B_r(0) \cap S,$$

$$B_r(0) \cap \Lambda' = B_r(0) \cap S'$$ and

$$B_r(x) \cap S = B_r(x) \cap S'.$
MAXIMAL EQUICONTINUOUS FACTOR:

\(\sim_{rp} \) is a closed equivalence relation. Let

\[\Omega_{max} := \Omega / \sim_{rp} \]

with quotient map

\[\pi : \Omega \rightarrow \Omega_{max}. \]
MAXIMAL EQUICONTINUOUS FACTOR:
\(\sim_{rp} \) is a closed equivalence relation. Let

\[\Omega_{max} := \Omega / \sim_{rp} \]

with quotient map

\[\pi : \Omega \rightarrow \Omega_{max}. \]

THEOREM (Veech): \((\Omega_{max}, \mathbb{R}^n)\) is the *maximal equicontinuous factor* of \((\Omega, \mathbb{R}^n)\).
MAXIMAL EQUICONTINUOUS FACTOR:
\(\sim_{rp} \) is a closed equivalence relation. Let

\[
\Omega_{\text{max}} := \Omega / \sim_{rp}
\]

with quotient map

\[
\pi : \Omega \to \Omega_{\text{max}}.
\]

THEOREM (Veech): \((\Omega_{\text{max}}, \mathbb{R}^n)\) is the *maximal equicontinuous factor* of \((\Omega, \mathbb{R}^n)\).

THEOREM (B., Kellendonk): Under SA \((\Omega_{\text{max}}, \mathbb{R}^n)\) is a Kronecker action on a torus or solenoid. There are \(m < M\) so that:

(i) \(m \leq \#(\pi^{-1}(z)) \leq M\) for all \(z \in \Omega_{\text{max}}\);

(ii) \(\pi\) is a.e. \(m\)-to-one; and

(iii) for each \(z \in \Omega_{\text{max}}\) there are \(\Lambda_1, \ldots, \Lambda_m \in \pi^{-1}(z)\) with \(\Lambda_i \cap \Lambda_j = \emptyset\) for \(i \neq j\).
MAXIMAL EQUICONTINUOUS FACTOR:

\(\sim_{rp}\) is a closed equivalence relation. Let

\[\Omega_{\text{max}} := \Omega / \sim_{rp}\]

with quotient map

\[\pi : \Omega \to \Omega_{\text{max}}.\]

THEOREM (Veech): \((\Omega_{\text{max}}, \mathbb{R}^n)\) is the *maximal equicontinuous factor* of \((\Omega, \mathbb{R}^n)\).

THEOREM (B., Kellendonk): Under SA \((\Omega_{\text{max}}, \mathbb{R}^n)\) is a Kronecker action on a torus or solenoid. There are \(m < M\) so that:

(i) \(m \leq \#(\pi^{-1}(z)) \leq M\) for all \(z \in \Omega_{\text{max}}\);
(ii) \(\pi\) is a.e. \(m\)-to-one; and
(iii) for each \(z \in \Omega_{\text{max}}\) there are \(\Lambda_1, \ldots, \Lambda_m \in \pi^{-1}(z)\) with \(\Lambda_i \cap \Lambda_j = \emptyset\) for \(i \neq j\).

\(\text{cr}(\Omega) := m\) is called the *coincidence rank* of \(\Omega\).
EXAMPLE:
Fibonacci.
From now on, let’s assume, in addition to SA, that Λ is nonperiodic.

Let

$$\mathcal{E} := \mathcal{E}((\Omega, \mathbb{R}^n)).$$

Recall that $t \mapsto (\Lambda \mapsto \Lambda - t)$ embeds \mathbb{R}^n into \mathcal{E} (call the image \mathbb{R}^n with $\overline{\mathbb{R}^n} = \mathcal{E}$). Let

$$\mathcal{E}^\infty := \mathcal{E} \setminus \mathbb{R}^n$$

and let

$$\mathcal{E}_{max} := \mathcal{E}((\Omega_{max}, \mathbb{R}^n)).$$

Then \mathcal{E}_{max} is naturally isomorphic with Ω_{max} and π induces $\pi_* : \mathcal{E}^\infty \to \mathcal{E}_{max} = \Omega_{max}$, leading to the short exact sequence:

$$1 \to K \to \mathcal{E}^\infty \to \Omega_{max} \to 1,$$

$$K := \ker(\pi_*).$$
MINIMAL IDEALS:
It follows from a previous theorem
MINIMAL IDEALS:
It follows from a previous theorem
(for each $z \in \Omega_{max}$ there are $\Lambda_1, \ldots, \Lambda_m \in \pi^{-1}(z)$ with $\Lambda_i \cap \Lambda_j = \emptyset$ for $i \neq j$)
MINIMAL IDEALS:
It follows from a previous theorem
(for each $z \in \Omega_{\text{max}}$ there are $\Lambda_1, \ldots, \Lambda_m \in \pi^{-1}(z)$ with
$\Lambda_i \cap \Lambda_j = \emptyset$ for $i \neq j$)
that if $m = cr(\Omega)$ then

- $\#(f(\pi^{-1}(z))) \geq m$ for all $f \in \mathcal{E}$ and all $z \in \Omega_{\text{max}}$.
MINIMAL IDEALS:
It follows from a previous theorem
(for each \(z \in \Omega_{\text{max}} \) there are \(\Lambda_1, \ldots, \Lambda_m \in \pi^{-1}(z) \) with \(\Lambda_i \cap \Lambda_j = \emptyset \) for \(i \neq j \))
that if \(m = \text{cr}(\Omega) \) then

- \(\#(f(\pi^{-1}(z))) \geq m \) for all \(f \in \mathcal{E} \) and all \(z \in \Omega_{\text{max}} \).
 It follows from minimality that

- If \(\mathcal{M} \) is a minimal left ideal in \(\mathcal{E} \) then, for each \(z \in \Omega_{\text{max}} \) and \(f \in \mathcal{M} \),
 \[\#(f(\pi^{-1}(z))) = m. \]
MINIMAL IDEALS:
It follows from a previous theorem
(for each \(z \in \Omega_{\text{max}} \) there are \(\Lambda_1, \ldots, \Lambda_m \in \pi^{-1}(z) \) with
\(\Lambda_i \cap \Lambda_j = \emptyset \) for \(i \neq j \))
that if \(m = \text{cr}(\Omega) \) then

\[\#(f(\pi^{-1}(z))) \geq m \text{ for all } f \in \mathcal{E} \text{ and all } z \in \Omega_{\text{max}}. \]
It follows from minimality that

\[\text{If } \mathcal{M} \text{ is a minimal left ideal in } \mathcal{E} \text{ then, for each } z \in \Omega_{\text{max}} \text{ and } f \in \mathcal{M}, \]
\[\#(f(\pi^{-1}(z))) = m. \]

Furthermore, given \(f \in \mathcal{E} \) with \(\#(f(\pi^{-1}(z))) = m \) for all
\(z \in \Omega_{\text{max}}, \)

\[\mathcal{M} = \{ g \in \mathcal{E}^{\infty} : g(\Lambda) = g(\Lambda') \iff f(\Lambda) = f(\Lambda') \} \]

is a minimal left ideal.
IDEMPOTENTS:

- Given $\Lambda, \Lambda' \in \Omega$, there is $f \in \mathcal{E}$ with $f(\Lambda) = f(\Lambda')$ if and only if $\Lambda \sim_p \Lambda'$.
IDEMPOTENTS:

- Given $\Lambda, \Lambda' \in \Omega$, there is $f \in \mathcal{E}$ with $f(\Lambda) = f(\Lambda')$ if and only if $\Lambda \sim_p \Lambda'$.

- Moreover, if $\Lambda \sim_p \Lambda'$, and $\Lambda \neq \Lambda'$ there is a *minimal idempotent* $p \in \mathcal{E}^\infty$ ($pp = p$ and p in some minimal \mathcal{M}) with $p(\Lambda) = p(\Lambda')$.
THEOREM: If M is a minimal left ideal in \mathcal{E} and $\mathcal{J} \subset M$ is the set of idempotents in M, then:

(i) pM is a group for each $p \in \mathcal{J}$ and

(ii) $M = \bigcup_{p \in \mathcal{J}} pM$ is a disjoint union.
THEOREM: If \mathcal{M} is a minimal left ideal in \mathcal{E} and $\mathcal{J} \subset \mathcal{M}$ is the set of idempotents in \mathcal{M}, then:
(i) $p\mathcal{M}$ is a group for each $p \in \mathcal{J}$ and
(ii) $\mathcal{M} = \bigcup_{p \in \mathcal{J}} p\mathcal{M}$ is a disjoint union.

Now, restricting the previous SES, we have, for each minimal idempotent p, an SES of groups:

$$1 \to K_p \to p\mathcal{M} \to \Omega_{max} \to 1,$$

In which the the kernel K_p is trivial if and only if $cr = 1$.
EXAMPLE:
Let Λ be the previously described Fibonacci point set. Then $\Omega_{\text{max}} = \mathbb{T}^2$, \mathcal{E} has a unique minimal left ideal, which equals \mathcal{E}^∞, and two minimal idempotents p, q. The kernels $K_p = \{p\}$ and $K_q = \{q\}$ of the preceding SES are trivial, so that

$$p\mathcal{E}^\infty \simeq \mathbb{T}^2 \simeq q\mathcal{E}^\infty$$

giving the description

$$\mathcal{E}^\infty \simeq \{p, q\} \times \mathbb{T}^2$$

where multiplication in the product is given by

$$(x, z) \cdot (y, w) := (x, z + w).$$
The point set Λ is a *perfect quasicrystal* if $cr(\Omega_\Lambda) = 1$. (This is the case if and only if Λ has pure point diffraction spectrum.)
The point set Λ is a *perfect quasicrystal* if $cr(\Omega_\Lambda) = 1$. (This is the case if and only if Λ has pure point diffraction spectrum.)

THEOREM: $\mathcal{E}((\Omega_\Lambda, \mathbb{R}^n))$ has a unique minimal left ideal \mathcal{M} if and only if $cr(\Omega) = 1$ (Λ is a ‘perfect quasicrystal’). In this case,

$$\mathcal{M} \simeq \mathcal{J} \times \Omega_{\text{max}}$$

with multiplication on the product given by

$$(p, z) \cdot (q, w) := (p, z + w).$$
The point set \(\Lambda \) is a \textit{perfect quasicrystal} if \(cr(\Omega_\Lambda) = 1 \). (This is the case if and only if \(\Lambda \) has pure point diffraction spectrum.)

THEOREM: \(\mathcal{E}(\Omega_\Lambda, \mathbb{R}^n) \) has a unique minimal left ideal \(\mathcal{M} \) if and only if \(cr(\Omega) = 1 \) (\(\Lambda \) is a ‘perfect quasicrystal’). In this case,

\[
\mathcal{M} \simeq \mathcal{J} \times \Omega_{\text{max}}
\]

with multiplication on the product given by

\[
(p, z) \cdot (q, w) := (p, z + w).
\]

So, for perfect quasicrystals, one would like to understand the subsemigroup, \(\mathcal{J} \), of minimal idempotents.
THEOREM (Aujogue): If $\Lambda \subset \mathbb{R}^n$ is a codimension k almost canonical cut-and-project set with hull Ω and Ellis semigroup \mathcal{E} then the collection $\mathcal{J} \subset \mathcal{E}^\infty$ of idempotents is a finite sub-semigroup. For each $p \in \mathcal{J}$ there is a subtorus

$$T_p \subset \Omega_{max} \cong \mathbb{T}^{n+k}$$

so that \mathcal{E}^∞ is a disjoint union of groups

$$\mathcal{E}^\infty \cong \bigcup_{p \in \mathcal{J}} \{p\} \times \tilde{T}_p$$

with coordinate-wise multiplication. Here $\tilde{T}_p := T_p + \mathbb{R}^n \subset T^{n+k}$ and if p is minimal, then $\tilde{T}_p = T_p = \mathbb{T}^{n+k}$. The product in \mathcal{J} is described by the face semigroup structure defined by the hyperspace arrangement determining the boundary of the window of the cut-and-project scheme.
An ‘imperfect’ quasicrystal with a non-tame Ellis semigroup:

Consider the fixed point \[01101001, 10010110, \ldots\] of the Thue-Morse substitution \[0 \mapsto 0110, 1 \mapsto 1001, \ldots\] and the corresponding bi-colored Delone set \(\Lambda\). The maximal equicontinuous factor of the hull \(\Omega = \Omega_\Lambda\) is the dyadic solenoid \(S_2\) and the coincidence rank is 2. There are two minimal left ideals, \(M^{-}\) and \(M^{+}\), in \(E = E((\Omega, \mathbb{R}))\) and \(E_\infty = M^{-} \cup M^{+}\) is a disjoint union. There are two idempotents, \(p^{\pm}\) and \(q^{\pm}\), in each minimal ideal.
An ‘imperfect’ quasicrystal with a non-tame Ellis semigroup:

Consider the fixed point

\[\cdots 01101001.10010110 \cdots \]

of the Thue-Morse substitution

\[0 \mapsto 0110, \ 1 \mapsto 1001 \]

and the corresponding bi-colored Delone set \(\Lambda \).

The maximal equicontinuous factor of the hull \(\Omega = \Omega_\Lambda \) is the dyadic solenoid \(S_2 \) and the coincidence rank is 2.
An ‘imperfect’ quasicrystal with a non-tame Ellis semigroup:

Consider the fixed point

\[\cdots 01101001.10010110 \cdots \]

of the Thue-Morse substitution

\[0 \mapsto 0110, \quad 1 \mapsto 1001 \]

and the corresponding bi-colored Delone set \(\Lambda \)

The maximal equicontinuous factor of the hull \(\Omega = \Omega_\Lambda \) is the dyadic solenoid \(S_2 \) and the coincidence rank is 2.

There are two minimal left ideals, \(M^- \) and \(M^+ \), in \(E = E((\Omega, \mathbb{R})) \) and

\[E^\infty = M^- \cup M^+ \]

is a disjoint union.
An ‘imperfect’ quasicrystal with a non-tame Ellis semigroup:

Consider the fixed point

\[\cdots 01101001.10010110 \cdots \]

of the Thue-Morse substitution

\[
0 \mapsto 0110, \quad 1 \mapsto 1001
\]

and the corresponding bi-colored Delone set \(\Lambda \)

The maximal equicontinuous factor of the hull \(\Omega = \Omega_\Lambda \) is the dyadic solenoid \(S_2 \) and the coincidence rank is 2.

There are two minimal left ideals, \(\mathcal{M}^- \) and \(\mathcal{M}^+ \), in \(\mathcal{E} = \mathcal{E}(\Omega, \mathbb{R}) \) and

\[
\mathcal{E}^\infty = \mathcal{M}^- \cup \mathcal{M}^+
\]

is a disjoint union.

There are two idempotents, \(p^\pm, q^\pm \in \mathcal{M}^\pm \) in each minimal ideal.
Let \mathcal{O} be the (uncountable!) collection of arc-components of S_2. The kernels K_f of

$$1 \to K_f \to f\mathcal{M} \to S_2 \to 1,$$

where $f \in \{p^\pm, q^\pm\}$ and $\mathcal{M} \in \{\mathcal{M}^\pm\}$, are each isomorphic with the group

$$\mathcal{G} := \{0, 1\}^\mathcal{O},$$

and the sequences split so that

$$f\mathcal{M} \simeq \mathcal{G} \rtimes S_2.$$
Let \mathcal{O} be the (uncountable!) collection of arc-components of S_2. The kernels K_f of

$$1 \to K_f \to f\mathcal{M} \to S_2 \to 1,$$

where $f \in \{p^\pm, q^\pm\}$ and $\mathcal{M} \in \{\mathcal{M}^\pm\}$, are each isomorphic with the group

$$\mathcal{G} := \{0, 1\}^\mathcal{O},$$

and the sequences split so that

$$f\mathcal{M} \simeq \mathcal{G} \rtimes S_2.$$

This gives the description:

$$\mathcal{E}^\infty \simeq \{p^\pm, q^\pm\} \times (\mathcal{G} \rtimes S_2)$$

with coordinate-wise product and the left domination rule in the first factor.