ON INDECOMPOSABILITY IN CHAOTIC ATTRACTORS

JAN P. BORÓŃSKI AND PIOTR OPROCHA

Abstract. We exhibit a Li-Yorke chaotic interval map F such that the inverse limit $X_F = \lim \{F, [0, 1]\}$ does not contain an indecomposable subcontinuum. Our result contrasts with the known property of interval maps: if φ has positive entropy then X_{φ} contains an indecomposable subcontinuum. Each subcontinuum of X_F is homeomorphic to one of the following: an arc, or X_F, or a topological ray limiting to X_F. From a result of Barge and Martin it follows that X_F is a chaotic attractor of a planar homeomorphism. In addition, F can be modified to give a cofrontier that is a chaotic attractor of a planar homeomorphism but contains no indecomposable subcontinuum. Finally, F can be modified, without removing or introducing new periods, to give a chaotic zero entropy interval map, such that the corresponding inverse limit contains the pseudoarc.

1. Introduction

The strong connection between dynamics of an interval map $\varphi : [0, 1] \to [0, 1]$ and topology of the inverse limit $X_\varphi = \lim \{\varphi, [0, 1]\}$ has been well documented in the last 30 years. An extensive study of this and related subjects was triggered by a series of papers by Marcy Barge and his collaborators. Among many results, Barge and Martin [3] showed that for an interval map with a periodic point of period that is not a power of 2 the inverse limit space X_φ must contain an indecomposable subcontinuum. Barge and Martin [4] also showed that for any interval map φ such inverse limit can be realized as an attractor of a planar homeomorphism $h : \mathbb{R}^2 \to \mathbb{R}^2$ that restricted to X_φ agrees with the shift homeomorphism σ_φ. Since then there has been a lot of attention given to the problem of relating the dynamics of a map to the topological structure of the corresponding inverse limit, and the principle that complicated dynamics induces complicated topology has become well-known and often referred to. The purpose of this article is to show that one must be careful applying this principle, as a chaotic interval map can produce a connected attractor without indecomposable subcontinua. It seems that ours is the first such example presented explicitly. This is despite the fact, that for a positive entropy map φ the inverse limit space X_φ must contain an indecomposable subcontinuum [30].

Theorem 1. There is a map $F : [0, 1] \to [0, 1]$ such that the inverse limit $X_F = \lim \{F, [0, 1]\}$ contains no indecomposable subcontinuum (in particular, X_F is decomposable) and the induced shift homeomorphism σ_F on X_F is Li-Yorke chaotic.

The map F in the above theorem can be modified to a circle map with the same properties, which by the result of Barge and Martin leads to the following theorem.

2000 Mathematics Subject Classification. 54F15; 54F20.
Key words and phrases. interval map, arc-like, Li-Yorke chaotic, indecomposable continuum.
Theorem 2. There are planar homeomorphisms h_1 and h_2, an arc-like continuum Λ_1 and cofrontier Λ_2 such that Λ_1 is a Li-Yorke chaotic attractor of h_1, and neither Λ_i contains an indecomposable subcontinuum.

Before we progress, let us first briefly present definitions of some notions used above. The notion of chaos we use here comes from a paper by Li and Yorke [19]. A continuous map $\phi: X \to X$ acting on a compact metric space (X, ρ) is Li-Yorke chaotic if there is an uncountable set $S \subset X$ such that $\liminf_{n \to \infty} \rho(\phi^n(x), \phi^n(y)) = 0$ and $\limsup_{n \to \infty} \rho(\phi^n(x), \phi^n(y)) > 0$ for any distinct points $x, y \in S$. It is known that there exist maps on the unit interval with zero topological entropy but Li-Yorke chaotic. These are some among the maps of type 2^∞, i.e. maps with points of period 2^n for every n and no other periods.

A continuum is a nondegenerate connected and compact space. A continuum A is a Li-Yorke chaotic attractor of a planar homeomorphism h if A is an attractor and $h|A$ is Li-Yorke chaotic. An arc-like (also snakelike, or chainable) continuum is a space that can be obtained as the inverse limit of arcs, with continuous bonding maps. Arc-like continua do not separate the plane. A cofrontier is a continuum that irreducibly separates the plane into exactly two components and is the boundary of each. A continuum is decomposable if it can be written as the union of two proper subcontinua. It is hereditarily decomposable if every subcontinuum is decomposable.

It was a long-standing conjecture of Barge that no hereditarily decomposable arc-like continuum admits homeomorphisms with positive entropy. Special case of Barge’s conjecture was proved by Ye in 1995 [30] for homeomorphisms induced by square commuting diagrams on inverse limits of arcs. Ingram [14] and Ye independently also showed that homeomorphisms of hereditarily decomposable continua admit only 2^n-periodic orbits, so their dynamics is relatively simple. Barge’s conjecture has been recently proved by Mouron [26], and consequently hereditarily decomposable arc-like continua admit only zero entropy homeomorphisms. However, our result shows that chaotic homeomorphisms on such continua actually do exist.

The starting point of our construction is a simple, zero entropy interval map f of type 2^∞. In Section 2, using a theorem of Bennett and Ingram [15], we are able to show that X_f contains a countable family of decomposable continua, each of which is homeomorphic to X_f. Further, each subcontinuum of X_f is a member of this family, or a topological ray limiting to such a continuum, or an arc. Next, in Section 3, we modify f by a Denjoy-like construction to produce a Li-Yorke chaotic zero entropy map F of type 2^∞. We show that this modification results in a topologically monotone factor map $\Pi: X_F \to X_f$, which guarantees that X_F is hereditarily decomposable. Further, we modify f to a Li-Yorke-chaotic circle map G such that X_G is hereditarily decomposable. The last section contains additional comments and questions related to our construction.

2. A MAP OF TYPE 2^∞ AND ITS INVERSE LIMIT

In this section we construct a particular example of a map of type 2^∞. While there are numerous different methods of construction of such a map (see, e.g. [2, 12, 24]), even of type C^∞, a map f considered in this section has an additional property, that its inverse limit can be easily investigated. It is the main feature demanded by us.

Define a map $f: [0, 1] \to [0, 1]$ determined by the following (see Figure 2)
ON INDECOMPOSABILITY IN CHAOTIC ATTRACTORS

Figure 1. An hereditarily decomposable attractor X_F.

- $f(0) = \frac{2}{3}, f(1) = 0$,
- $f(1 - \frac{2}{3^n}) = \frac{1}{3^n}$, and $f(1 - \frac{1}{3^n}) = \frac{2}{3^n}$ for all $n \geq 1$,
- f is linear between the above points.

This example was developed by Delahaye in [10] who proved that the map is of type 2^∞ (see also [28]).

For the reminder of this section denote by σ_f the shift homeomorphism induced by f to $X_f = \lim \{f, [0,1]\}$. For convenience, we sometimes denote $\lim \{f|_Y, Y\}$ simply by $\lim \{f, Y\}$. The projection of X onto n-th coordinate is denoted by $\pi_n: X \ni x \mapsto x_i \in [0,1]$. Let $I_0^n = [0,1/3^n]$ for $n = 1, 2, \ldots$. These are intervals for cycles of length 2^n, i.e. $f^{2^n}(I_0^n) = I_0^n$. Denote $I_j^n = f^j(I_0^n)$ for $j = 0, 1, \ldots, 2^n$ (we keep $I_{2^n}^n = I_0^n$ for simplicity of the notation). It can be proved that if $x \in [0,1]$ and $n > 0$ then either there is $k > 0$ such that $f^k(x) \in I_0^n$ or there is $s > 0$ such

Figure 2. Graph of f and f^2
that x is a periodic point of period 2^n. It can also be proved that f is not Li-Yorke chaotic.

Observe that $f^{2^n}|_{I^n_0}: I^n_0 \to I^n_0$ is an onto map. Denote by X^n_0 the inverse limit $X^n_0 = \lim_{\leftarrow} \{g_i, I^n_{-i} \pmod{2^n}\}$ where $g_i = f|I^n_{-i} \pmod{2^n}$ for $i = 1, 2, \ldots$. Denote $X^n_i = \sigma^n_f(X^n_0)$. Clearly X^n_0 is periodic under σ_f and $X^n_0 = X^0_0$ and furthermore $X^n_0 + 1 \cup X^n_{2^n + 1} \subset X^n_0$.

A homeomorphic image of $[0, +\infty)$ is a topological ray and homeomorphic image of $(-\infty, +\infty)$ is a topological line.

The following useful result is attributed to Ralph Bennett. A proof (with a historical remark) can be found in [15].

Theorem 3 (Bennett). Suppose that $g: [a, b] \to [a, b]$ is continuous and $a < d < b$ is such that $g([d, b]) \subset [d, b]$, $g|_{[a, d]}$ is monotone and there is $n > 0$ such that $g^n([d, b]) = [a, b]$. Then continuum $K = \lim_{\leftarrow} \{g, [a, b]\}$ is the union of a topological ray R and a continuum $C = \lim_{\to} \{g, [a, b]\}$ such that $R \setminus R = C$.

Lemma 4. Each continuum X^n_j is homeomorphic to X^n_f.

Proof. By induction, it is easy to see that the graph of f^{2^n} on I^n_0 is the same as $f^{2^{n-1}}$ on I^n_0, that is, these maps are conjugate, or in other words, continua X^n_0 and $X^n_{2^n - 1}$ are homeomorphic. The theorem follows for $j \neq 0$ by the fact that, for a fixed i, $X^n_i = \sigma^n_f(X^n_0)$ and σ_f is a homeomorphism.

Lemma 5. The continuum X^n_f is the union of two continua K_1 and K_2 such that

(1) K_1 is homeomorphic to K_2,

(2) K_1 is the union of a topological ray R_1 and X^n_0 that compactifies R_1; i.e. $R_1 = X^n_0$,

(3) K_2 is the union of a topological ray R_2 and X^n_1 that compactifies R_2; i.e. $R_2 = X^n_1$,

(4) $K_1 \cap K_2 = R_1 \cap R_2 = \{\hat{p}\}$, where \hat{p} is the fixed point of σ_f.

Proof. Let p be the fixed point of f. Set $g = f^2$ and let $K_1 = \lim_{\leftarrow} \{g, [p, 1]\}$. Note that $g([13/21, 1]) \subset [13/21, 1]$, $g|_{[p, 13/21]}$ is monotone, and $g([p, 13/21]) = [p, 1]$. Therefore, by Theorem 3, we obtain that K_1 is the union of a topological ray R_1 and the continuum $C_1 = \lim_{\to} \{g, [13/21, 1]\}$ that compactifies R_1. Clearly

$$C_1 = \lim_{\leftarrow} \{g, [13/21, 1]\} = \lim_{\to} \{g, [13/2, 1]\} = X^n_3$$

and $\hat{p} = (p, p, p, \ldots)$ is the end point of R_1. Setting $K_2 = \lim_{\leftarrow} \{g, [0, p]\}$ the theorem follows by the fact that $\sigma_f(K_1) = K_2$.

Corollary 6. Each X^n_j is the union of a topological line L and the continua X^n_{t+1} and $X^n_{t'+1}$ such that $L \setminus L = X^n_{t+1} \cup X^n_{t'+1}$, for some t and t'.

Proof. This follows from the previous two lemmas.

Theorem 7. Continuum X^n_f is hereditarily decomposible.

Proof. Since by Lemma 5 continuum X^n_f is decomposable, we need to show that so is each subcontinuum of X^n_f. Let K be a subcontinuum of X^n_f. Recall that X^n_f is the union of a topological line L limiting with one end to X^n_0 and with the other to X^n_1. Using the previous lemmas we will keep partitioning X^n_f (if necessary) to
find where K is located and realize that K must be an arc, or homeomorphic to K_1 from Lemma 5, or homeomorphic to X_f. By Lemma 4 we can view each X^n_i as X_f, in particular we can apply partitioning provided by Lemma 5 to it. We will use this fact without any further reference in the proof.

(1) suppose that $K \cap L \neq \emptyset$. If $L \subseteq K$ then $K = X_f$ and we are done. Otherwise, if $L \setminus K \neq \emptyset$, then K is an arc (this is when $K \subseteq L$), or it is the union of a topological ray limiting to either X^0_1 or X^1_1, and we are done as well.

(2) suppose that $K \cap L = \emptyset$. Then either $K \subseteq X^0_1$ or $K \subseteq X^1_1$. Without loss of generality assume $K \subseteq X^0_1$.

(3) let L_1 be the topological line whose union with the continua X^2_0 and X^2_2, that compactify L_1, is X^1_0. In other words $\overline{L_1} \setminus L_1 = X^2_0 \cup X^2_2$ and $\overline{L_1} = X^1_0$. If $K \cap L_1 \neq \emptyset$ then we are done by the same reasoning as in (1).

(4) if $K \cap L_1 = \emptyset$ then, as in (2), we deduce that $K \subseteq X^0_1$.

(5) from the fact that $\lim_{i \to \infty} \text{diam}(X^0_1) = 0$ it follows that after finitely many steps we will be able to deduce that K is an arc, or the union of a topological ray limiting to some X^0_n or $K = X^1_n$ for some integers n,j. Namely, for X^0_n such that $\text{diam}(X^0_n) < \text{diam}(K)$ we cannot have $K \subseteq X^0_n$ so the above procedure terminates.

The proof is complete. \square

A continuum that contains exactly n topologically distinct subcontinua is called n-equivalent. As we exhibited in the above proof, X_f is 3-equivalent. It is worth emphasizing, that an interesting example of 2-equivalent continuum was recently constructed by Islas [16], who proved that his example was hereditarily decomposable but without investigating the dynamical properties of it. In fact, Islas is using a sequence of bonding maps, so there is no easy way to induce a homeomorphism on the resulting continuum.

3. Chaos in the sense of Li and Yorke

The aim of this section is to prove Theorems 1 and 2. A starting point is the map constructed in Section 2 (recall that its graph is on Figure 2) which we consequently denote f.

We will perform a construction similar to that of a Denjoy map [11, Example 14.9]. First note that for all but countably many points $c \in (0,1)$ there is an open set $U \ni c$ such that f is injective on U.

Denote by Q the ω-limit set of 0 under f (i.e. $Q = \omega(0,f)$) and observe that for every $c \in Q$ and every n there is j such that $c \in I^n_j$ and hence orbit of c visits each interval I^n_j with period 2^n. But diam $I^n_j = 3^{-n}$ hence the family of iterates of $f|Q$ is equicontinuous. Note that $f|Q$ is a homeomorphism, since every transitive map that has equicontinuous iterates is a homeomorphism (see [1]). It is also not hard to see that if $c \in [0,1]$ then $\omega(c,f)$ is periodic orbit (i.e. c is eventually periodic) or $Q = \omega(c,f)$. Namely, if $\omega(c,f)$ in not periodic orbit then for every n the orbit of c has to eventually intersect the interval I^n_0.

Choose a point $z \in Q$, denote $D_0 = \{z, f(z)\} \cup f^{-1}(\{z\})$ and inductively $D_{n+1} = f(D_n) \cup f^{-1}(D_n)$. Finally put

\[D_z = \bigcup_{n=1}^{\infty} D_n. \]
Since f is a homeomorphism on Q, for points z from different orbits, sets D_z are disjoint. But Q is uncountable and each point has finite preimage under f, hence we can find z such that for every $c \in D_z$ there is an open set $U \ni c$ such that f is an injection on U. Note that there at most countably many points $q \in Q$ such that $(q, q + \varepsilon) \cap Q = \emptyset$ or $(q - \varepsilon, 1) \cap Q = \emptyset$ for some $\varepsilon > 0$. Hence we may also assume that for every $\varepsilon > 0$ and for every $c \in D_z$ we have $(c - \varepsilon, c) \cap Q \neq \emptyset$ and $(c, c + \varepsilon) \cap Q \neq \emptyset$.

In particular, D_z is countable and so we can enumerate its elements: assume that $D = \{y_i : i \in \mathbb{Z}\}$ where $y_i \neq y_j$ for $i \neq j$. Furthermore observe that if $f^n(y_i) = y_j$ for some $n > 0$ then $i \neq j$ and $y_j \notin \text{Orb}^+(y_j, f)$, as otherwise z would be an eventually periodic point. Just by the definition, both sets D_z and $[0, 1] \setminus D_z$ are invariant, i.e. $f(D_z) = D_z$ and $f([0, 1] \setminus D_z) = [0, 1] \setminus D_z$. There is also a function $\phi : \mathbb{Z} \to \mathbb{Z}$ so that $f(y_i) = y_{\phi(i)}$.

As the final step of our construction we remove all the points y_i from $[0, 1]$ and fill each obtained hole with an interval I_i of length $2^{-|i|}$. This way a new continuous map F is defined on the extended space in such a manner that:

1. each interval I_i is mapped homeomorphically onto $I_{\phi(i)}$;
2. if all intervals I_i are collapsed back to single points then F reverts back to the map f.

Condition (1) can be satisfied because the preimage $f^{-1}(y_i)$ of every y_i is finite and, by the choice of z, the map f is injective on some small neighborhood of every $y \in f^{-1}(y_i)$.

As the domain of F is isometric to $[0, 4]$ we can assume that $F : [0, 4] \to [0, 4]$. In this way every interval I_i becomes some interval $[a_i, b_i] \subset [0, 4]$ and there is a quotient map $\pi : [0, 4] \to [0, 1]$ that does not increase distance, collapses every interval $[a_i, b_i]$ into a single point (i.e. $\pi([a_i, b_i]) = \{y_i\}$), and has the property that $f \circ \pi = \pi \circ F$. If we fix indices $i, j \in \mathbb{Z}$, such that $y_i \notin \text{Orb}^+(y_j, f)$ then $F^n([a_j, b_j]) \cap (a_i, b_i) = \emptyset$ for all $n > 0$. This implies that there is one-to-one correspondence between periodic points of f and F, which implies that F is also of type 2^∞, in particular has zero topological entropy. Simply, by Misiurewicz theorem, on the interval positive entropy is equivalent to the existence of a horseshoe for some power of the map $[23]$, which easily implies existence of a periodic point with period which is not a power of 2.

In [29] Smítal characterized Li-Yorke chaos in terms of separable orbits in ω-limit sets. We will use this result here. Let $\varphi : [0, 1] \to [0, 1]$ be continuous and fix two points $x_0, x_1 \in [0, 1]$. If there are two disjoint intervals J_0, J_1 and two integers $k_0, k_1 > 0$ such that for $i = 0, 1$ we have $x_i \in J_i$, $\varphi^{k_i}(J_i) = J_i$ and $\varphi^j(J_i)$ are pairwise disjoint for $j = 0, 1, \ldots, k_i - 1$ then we say that x_0, x_1 are φ-separable.

It was proved in [29, Theorem 2.2] that a map $\varphi : [0, 1] \to [0, 1]$ is Li-Yorke chaotic if and only if there is an infinite ω-limit set containing two points which are not φ-separable. Note that if we fix $q \in Q \setminus D_z$ then for every $c \in D_z$ and every $\varepsilon > 0$ we have $k, s > 0$ such that $f^k(q) \in Q \cap (c - \varepsilon, c)$ and $f^s(q) \in Q \cap (c, c + \varepsilon)$. If we denote the unique point $v \in \pi^{-1}(q)$ then it is clear that $\pi^{-1}(Q \setminus D_z)$ is contained in the ω-limit set of v under F, i.e.

$$v \in \omega(v, F) \supset \pi^{-1}(Q \setminus D_z) \supset \bigcup_{i \in \mathbb{Z}} \{a_i, b_i\}.$$
Since diameters of intervals $\lim_{i \to \infty} \text{diam} I_i = 0$, there is an asymptotic (hence not F-separable) pair for F in $\omega(v, F)$, e.g. pair a_0, b_0. This shows that F is Li-Yorke chaotic.

Denote $X_F = \lim \{F, [0, 4]\}$. Let $\Pi: X_F \to X_f$ be given by

$$\Pi(x) = (\pi(x_1), \pi(x_2), \pi(x_3), \ldots).$$

Recall that a map $T: X_1 \to X_2$ between two continua X_1 and X_2 is (topologically) monotone if $T^{-1}(x)$ is a subcontinuum of X_2 for every $x \in X_1$. Equivalently, T is monotone if $T^{-1}(K)$ is a subcontinuum of X_2 for every subcontinuum K of X_1.

Proposition 8. $\Pi: X_F \to X_f$ is an onto and monotone map.

Proof. First note that, by definition, $\pi: [0, 4] \to [0, 1]$ is a monotone map. Now let $x \in X_F$. If $\pi_j(x) = y_j$ for some j then $\Pi^{-1}(x)$ is an arc, as it is the inverse limit of I_i's with the homeomorphism F, when restricted to either I_i. If $\pi_1(x) \neq y_j$ for every j then $\Pi^{-1}(x)$ is a point. □

Lemma 9. Continuum X_F is hereditarily decomposable.

Proof. Let Z be a nondegenerate subcontinuum of X_F. It is enough to show that Z is decomposable. Note that if $\Pi(Z)$ is a point then the projection of Z from X_F onto either factor space is contained in I_j, for some j. Consequently Z is homeomorphic to an arc, by definition of F. If $\Pi(Z)$ is a nondegenerate subcontinuum of X_f, then $\Pi(Z) = W_1 \cup W_2$ for two proper subcontinua W_1 and W_2 of X_f. Since Π is monotone we deduce that $\Pi^{-1}(W_1)$ and $\Pi^{-1}(W_2)$ are subcontinua of X_F such that $Z = \Pi^{-1}(W_1) \cup \Pi^{-1}(W_2)$. This completes the proof. □

Now we are ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 9 X_F is hereditarily decomposable and by previous discussion F is a continuous onto map of type 2^∞ which is Li-Yorke chaotic. But Li-York chaos is shared by the shift homeomorphism on inverse limits [9], hence the result follows. □

Clearly, not every map of type 2^∞ defines a hereditarily decomposable inverse limit. For example, when constructing the map F we can define $F: I_i \to I_{\phi(i)}$ using any map fixing endpoints (e.g. maps presented in Example 4 or Example 5 in [3]), not necessarily linear homeomorphism. While such a modification has no influence on either the type of a map (new periodic points cannot be produced), or Li-Yorke chaos, an indecomposable subcontinuum such as the Knaster buckethandle continuum, or even the pseudoarc can be introduced in X_F.

Remark 10. There is a Li-Yorke chaotic interval map φ of type 2^∞ such that X_φ contains the pseudoarc.

The above observation also explains why we were so careful about the choice of the point z (and the set D_z) for the Denjoy extension. For example $0 \in Q$ however $f^k(0)$ is a singular point (i.e. point in which f is not monotone) for infinitely many values of $k > 0$. But if we insert I_i in a point at which f is not monotone, then F must send both endpoints of I_i into the same endpoint of $I_{\phi(i)}$. This forces us to send an inner point of I_i into the second endpoint of $I_{\phi(i)}$, and could lead to an indecomposable subcontinuum in X_F.

Recall that a continuum X is said to be Suslinean if every family of pairwise-disjoint subcontinua of X is countable (finite or not). Note that each Suslinean
continuum is hereditarily decomposable. We note that both X_f and X_F are Suslinian.

Proposition 11. Continuum X_f is Suslinian.

Proof. We take advantage of the partition of X_f used in the proof of Theorem 7. By contradiction, suppose 8 is an uncountable cardinal and $\{C_\beta : \beta < \aleph\}$ is a family of pairwise disjoint subcontinua of X_f. Because the topological line limiting to the continua X^0_0 and X^1_1 is Suslinian, uncountably many C_β's must be contained in either X^0_0 or X^1_1. Without loss of generality suppose X^0_0 contains uncountably many C_β's. Since, according to Theorem 7 X^0_0 is a union of a topological line L and two continua X^2_0 and X^3_1 homeomorphic to X_f, and L is Suslinian, either X^2_0 or X^3_1 must contain uncountably many C_β's. Proceeding with the continua X^1_1 by induction on i we obtain a contradiction since otherwise for some sequence i_n the set $\cap_{n=1}^{\infty} X^{i_n}$ must contain at least one continuum C_β while it is a singleton. □

Proposition 12. The continuum X_F is Suslinian.

Proof. Notice that it follows from the definition of the map F that the continuum X_F is obtained from X_f by blow-up of some of the points to an arc. There are two types of blow-up points in X_f. Specifically, $f|_Q$ is a homeomorphism and there are countably many blow-up points in Q, hence there are also at most countably many points blown up to intervals in $\lim \{f, Q\}$. Now, let $b \in X_f \setminus \lim \{f, Q\}$ be a blow-up point. Denote $I_k = [0, 1/3^k]$ for $k = 0, 1, 2, \ldots$. First of all, since $b \notin \lim \{f, Q\}$ there exists minimal k and $N > 0$ such that $b_j \notin \text{Orb}^+(I_{k+1})$ for all $j \geq N$ and if $b_j \in I_k$ then $b_j \in \text{Orb}^+(I_k)$ for all $i \geq j$. But note that if $b_j \in \text{Orb}^+(I_k) \setminus \text{Orb}^+(I_{k+1})$ for all $j \geq N$, then each b_j is uniquely determined by b_N. It is easy to see that it is true for $\text{Orb}^+(I_0) \setminus \text{Orb}^+(I_1) = (1/3, 2/3)$ and then using mathematical induction and symmetry of the graph of f we obtain (similarly to Lemma 4) that the same holds for all other $k > 0$. This shows that every $b \notin \lim \{f, Q\}$ is unique after dropping a few first positions. But then, since $\# f^{-1}(t) \leq 3$ for every $t \in [0, 1]$ on such first few coordinates and the set D used in the construction of F from f is countable, we obtain that there are at most countably many blown up points in $X_f \setminus \lim \{f, Q\}$ (when we know N, there are at most countably many choices for first N coordinates in each $b \notin \lim \{f, Q\}$ and then the choice for all subsequent coordinates in unique). Indeed, we have countably many blow-up points in X_F.

Next, suppose by the way of contradiction that X_F is not Suslinian. Again, suppose 8 is an uncountable cardinal and $\{C_\beta : \beta < \aleph\}$ is a family of pairwise disjoint subcontinua of X_f. By Proposition 8 there is a monotone onto map $\Pi : X_F \to X_f$. Since this map is continuous the family $\{\Pi(C_\beta) : \beta < \aleph\}$ consists of compact and connected subsets of X_f (some of which may be singletons). If $\Pi(C_\beta)$ is not a singleton for uncountably many β's then we obtain a contradiction with the fact that X_f is Suslinian. So $\Pi(C_\beta)$ is a singleton for uncountably many β's. But then it follows from the definition of Π that there would be uncountably many blow-up points in X_f, which is a contradiction. □

In [20] in Example 3.1 the authors provided a sequence of bonding maps f_1, f_2, \ldots such that $f_n(0) = 0$ and $f_n(1) = 1$ but the inverse limit $X = \lim \{f_n\}_{n=0}^{\infty} = [0, 1]$ is not Sulinean, while is hereditarily decomposable. Hence, if we take a sequence i_j such that $i_0 = 0$ and iterate backwards, so that $i_k = \phi(i_{k+1})$ then putting
(F: I_{k+1} \to I_k) = f_k \ (\text{after appropriate rescaling of domain of } f_k) \text{ we can embed } X \text{ as a subcontinuum of } X_F \text{ creating a non-Suslinean continuum.}

Remark 13. There is a Li-Yorke chaotic interval map \(\varphi \) of type \(2^\infty \) such that \(X_\varphi \) is not Suslinean (but is hereditarily decomposable).

Our next objective is to prove Theorem 2.

Lemma 14. There is a Li-Yorke chaotic circle map \(G: S^1 \to S^1 \) such that the inverse limit \(X_G = \lim \left\{ G, S^1 \right\} \) contains no indecomposable subcontinuum.

Proof. Consider the map \(\bar{f}: [-1, 2] \to [-1, 2] \), a modification of the interval map \(f \) represented in Figure 3. Since \(x = -1 \) and \(x = 2 \) are fixed points of \(\bar{f} \) we can identify them to a point to obtain a circle map \(g \). It is easily checked that the inverse limit \(X_g \) is hereditarily decomposable and \(g \) can be modified again to give a Li-Yorke chaotic circle map \(G \) with \(X_G \) that contains no indecomposable subcontinuum. \(\square \)

![Figure 3. The map \(\bar{f} \).](image-url)

Proof of Theorem 2. The homeomorphism \(h_1 \) and the arc-like attractor \(\Lambda_1 \) exist by Theorem 1 and [4]. The homeomorphism \(h_2 \) and the cofrontier \(\Lambda_2 \) can be constructed according to [5], by the fact that \(G \) in Lemma 14 is a degree 1 circle map. \(\square \)

4. Concluding remarks

Clearly, there exist Li-Yorke chaotic maps of type \(2^\infty \) which are \(C^\infty \)-smooth [24]. It would be interesting to know if one can improve the differentiability of our example.

Problem 1. Is there \(n > 0 \) such that \(\varphi \) is a \(C^n \)-smooth Li-Yorke chaotic interval map with the \(X_\varphi \) that is hereditarily decomposable? Does \(X_\varphi \) have “periodic” topological structure similar to \(X_F \) or \(X_F \) (see Lemmas 4, 5 and Figure 1)?
Also, it is known that there is an arc-like hereditarily decomposable continuum that contains no arc (e.g. see page 29 in [27]). Therefore the following question seems to be of interest.

Problem 2. Is there a Li-Yorke chaotic interval map \(\varphi \) such that \(\mathcal{X}_\varphi \) is hereditarily decomposable and contains no arc.

An arc-like hereditarily decomposable continuum that contains no arc should not be confused with a pseudoarc, which is hereditarily indecomposable. Recall that the pseudoarc is the unique homogeneous arc-like continuum [6],[7]. The pseudoarc contains no arc, as all subcontinua of it are indecomposable (in fact it is homeomorphic to each of its nondegenerate subcontinua). Every interval map is semi-conjugate to a pseudoarc homeomorphism [18] and the pseudoarc admits transitive homeomorphisms [17, 21]. Recently, Mouron has showed in [25] that if \(\mathcal{X}_\varphi \) is the pseudoarc then the entropy of \(\varphi \) (and the shift map \(\sigma_\varphi \)) is either 0 or \(\infty \). It is still an open question if there is a homeomorphism, or even a map, of the pseudoarc with positive finite entropy. Note that there is a zero entropy map \(\psi \) with a very simple dynamics, such that \(\mathcal{X}_\psi \) is the pseudoarc [13]. Motivated by our examples and the aforementioned results we ask the following.

Problem 3. Is there a Li-Yorke chaotic zero entropy homeomorphism of the pseudoarc?

At this point, it is also worth to mention that a positive answer to Problem 3 cannot be obtained using the inverse limit approach. It was proved in [8, Theorem F] that if a map \(\varphi : [0, 1] \to [0, 1] \) has a periodic point of period 2 or larger, and \(\mathcal{X}_\varphi \) is the pseudoarc, then it has a periodic point of odd period other than one. In particular, the inverse limit of a map of type \(2^\infty \) is never the pseudoarc.

Acknowledgements

The authors express many thanks to Piotr Minc and Steward Baldwin for interesting discussions on topics related to this work. We are also grateful to Gerardo Acosta for bringing Islas work [16] to our attention and to the anonymous referee for bringing to our attention the problem whether constructed continua are Suslinian or not. This resulted in Propositions 11 and 12.

J. Boronski’s work was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070). J. Boronski also gratefully acknowledges the partial support from the MSK DT1 Support of Science and Research in the Moravian-Silesian Region 2013 (RRC/05/2013). The research of P. Oprocha was supported by the Polish Ministry of Science and Higher Education from sources for science in the years 2013-2014, grant no. IP2012 004272.

References

ON INDECOMPOSABILITY IN CHAOTIC ATTRACTORS

11

(J. P. Borowski) National Supercomputing Centre IT4Innovations, Division of the University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. dubna 22, 70103 Ostrava, Czech Republic – and – AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland
E-mail address: jan.boronski@osu.edu

(P. Oprocha) AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland – and – Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland
E-mail address: oprocha@agh.edu.pl